The adaptive Gril estimator with a diverging number of parameters
نویسندگان
چکیده
We consider the problem of variables selection and estimation in linear regression model in situations where the number of parameters diverges with the sample size. We propose the adaptive Generalized Ridge-Lasso (AdaGril) which is an extension of the the adaptive Elastic Net. AdaGril incorporates information redundancy among correlated variables for model selection and estimation. It combines the strengths of the quadratic regularization and the adaptively weighted Lasso shrinkage. In this paper, we highlight the grouped selection property for AdaCnet method (one type of AdaGril) in the equal correlation case. Under weak conditions, we establish the oracle property of AdaGril which ensures the optimal large performance when the dimension is high. Consequently, it achieves both goals of handling the problem of collinearity in high dimension and enjoys the oracle property. Moreover, we show that AdaGril estimator achieves a Sparsity Inequality, i. e., a bound in terms of the number of non-zero components of the ’true’ regression coefficient. This bound is obtained under a similar weak Restricted Eigenvalue (RE) condition used for Lasso. Simulations studies show that some particular cases of AdaGril outperform its competitors.
منابع مشابه
General Estimating Equations: Model Selection and Estimation with Diverging Number of Parameters
This paper develops adaptive elastic net estimator for general estimating equations. We allow for number of parameters diverge to infinity. The estimator can also handle collinearity among large number of variables as well. This method has the oracle property, meaning we can estimate nonzero parameters with their standard limit and the redundant parameters are dropped from the equations simulta...
متن کاملApplication of adaptive sampling in fishery part 2: Truncated adaptive cluster sampling designs
There are some experiences that researcher come across quite number of time for very large networks in the initial samples such that they cannot finish the sampling procedure. Two solutions have been proposed and used by marine biologists which we discuss in this article: i) Adaptive cluster sampling based on order statistics with a stopping rule, ii) Restricted adaptive cluster sampling. Until...
متن کاملApplication of adaptive sampling in fishery part 2: Truncated adaptive cluster sampling designs
There are some experiences that researcher come across quite number of time for very large networks in the initial samples such that they cannot finish the sampling procedure. Two solutions have been proposed and used by marine biologists which we discuss in this article: i) Adaptive cluster sampling based on order statistics with a stopping rule, ii) Restricted adaptive cluster sampling. Until...
متن کاملDiscrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator
This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimat...
متن کاملAdaptive group bridge estimation for high-dimensional partially linear models
This paper studies group selection for the partially linear model with a diverging number of parameters. We propose an adaptive group bridge method and study the consistency, convergence rate and asymptotic distribution of the global adaptive group bridge estimator under regularity conditions. Simulation studies and a real example show the finite sample performance of our method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1302.6390 شماره
صفحات -
تاریخ انتشار 2013